Development of MERIT

Kyoto University (D1) Hidefumi Okita

This work was funded by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).

Background

☐ One of the scheme to mitigate LLFP of nuclear reactor is nuclear transformation using intense negative muon.

☐MERIT(Multiplex Energy Recovery Internal Target) scheme with FFAG can be useful to generate muon effectively.

☐ Proof of principle of MERIT scheme by modified present ERIT ring is curried out. (PoP MERIT ring)

Purpose of PoP experiment

Acceleration & Storage

simultaneously

- □Subjects to clarify the MERIT scheme
- OFixed RF frequency Acceleration
 - Serpentine or stationary bucket acceleration
- Storage
 - Large acceptance
- Olnjection
 - Adjustment of injection beam line
 - Generation of short bunch beam

In this presentation, evaluation and current status about these subjects are introduced.

Basic parameters of PoP MERIT ring

Particle	Proton
Energy range	10.0 [MeV] ~ 12.0 [MeV]
Radius	2.2[m] ~ 2.5[m]
Lattice	FDF-triplet
Number of Cell	8
Field Index k	0.03
RF Voltage	~200 [kV]
RF Frequency	18.12 [MHz]

K. Okabe "Design process of FFAG-ERIT ring", FFAG09

Fixed RF Acceleration ~Modification of the field index k~

□ Condition of serpentine acceleration

→Close to transition energy

→Modification of field index k from ERIT ring

ERIT $k = 1.92 \rightarrow PoP MERIT ring k = 0.03$ (transition E ~ 14 [MeV] @k = 0.03)

k: 0.03

□ Another Condition of Fixed RF Acceleration

→Stationary bucket acceleration

ex. k = 0.04

Fixed RF Acceleration ~Scheme to modify the field index k~

- □ Change the pole face shape.
- \rightarrow Set additional pole on the conventional one. (pole shape : k+1 ~ 1.03)
- ☐ Height of median plane shift vertically.
- →Shift the position of magnets and devices vertically. (ex.RF cavity, Magnet and Field Clamp etc.)

Tune variation & Acceptance~

□Results of beam tracking simulation with 3D field map of TOSCA

OAcceptance @ E = 11.0 [MeV]

Enough acceptance

Scheme for tuning the field index k

- ☐ Modify the tilt of pole face.
- →Insert the additional spacer at yoke.
 - Radial <u>inside</u> yoke → Field index k up
 - Radial <u>outside</u> yoke → Field index k down

Local k+1 & Tune variation & Acceptance

□Results of beam tracking simulation with 3D field map of TOSCA

9

1.1

1.2

Qx

1.3

1.4

Enough acceptance

Acceptance ~Error field~

- □Horizontal Tune ~1.03 \leftarrow Close to Integer resonance (Qx = 1.0)
 - →Evaluation of acceptance with error field
- □Results of beam tracking with error field (Linear edge field)
- OMisalignment : R direction dr = -1.0 [mm]

 \bigcirc Misalignment : Z direction dz = -1.0 [mm]

Enough acceptance too

Injection

- □ Injection beam line from LINAC to PoP MERIT ring is changed.
 - OSeparation of injection orbit and target orbit
 - →New bending magnet was built and installed.
 - OAdjustment of height shift of median plane (4cm)
 - →New vertical steering magnet was built and installed.

Injection

~Bending Magnet~

Old bending magnet

62.5

LINAC

New bending magnet

to main ring

 $4deq = (22.5 + 2.2) \times 2$

338.65 2229

□ Requirements of bending magnet

Particle	H-
Kinetic Energy	11 [MeV]
Magnetic Rigirity : B $ ho$	0.48 [TM]
Bending angle	49.4 [deg.]
Curvature Radius : p	1.29 [m]
Magnetic Field : B	0.37 [T]

Gap	10 [cm]
Total Current	~30000 [AT]
Number of Coil turn	60[turn]×2
Current	~250 [A]

24.5 50

Injection

~Vertical steering magnet ~

□ Requirements of vertical steering magnet

Vertical shift of beam line	4.0 [cm]
Particle	H-
Kinetic Energy	11 [MeV]
Max length of Magnet : L	<= 60 [cm]
Min length of Gap	>=10 [cm]

Specifications of vertical steering magnet

L	60 [cm]
ρ	2.26 [m]
Magnetic Rigility	0.48 [Tm]
Magnetic Field	0.212 [T]
Gap	15 [cm]
Total Current	~25000 [AT]
Number of Coil turn	325[turn]×2
Current	~40 [A]

Development of delay line chopper

- Purpose of development

 Measure beam position during

 acceleration accurately.
- →Beam width: ~10 [ns]
- →Delay line chopper

□ Delay line chopper

- Generate a short bunch beam at low energy.
- Composed of microstripline & coaxial cable.

Development of delay line chopper ~Parameters~

□ Requirements

Maximum size of chopper(W×L×H)	400×520×250 [mm]
Beam energy (H-)	30 [keV]
Chop width	10 [ns]
Repetition frequency	20 [Hz]

☐ Specifications of basic parameters

Length of chopper (Beam direction)	500 [mm]
Voltage	100 [V]
Full Gap of chopper	15 [mm]
Characteristic impedance	50 [Ω]

Development of delay line chopper ~Beam line elements~

Development of delay line chopper ~Parameters of beam tracking~

Particle / kinetic energy	H- / 30 [keV] (β=0.008)
lon temperature of lon source	5.0 [eV]
Max beam size at exit of lon source	φ10 [mm]
Length of the chopper	500 [mm]
Voltage	100 [V] / 15 [mm]Gap
Magnetic field of solenoid (lon source side)	1101 [Gauss] g:2.2
Magnetic field of solenoid (RFQ side)	1151 [Gauss] g:2.0
Aperture of RFQ	φ10 [mm]

Development of delay line chopper ~Results of beam tracking~

□Results of beam tracking at the entrance of the RFQ

Beam can be separated at the entrance of the RFQ.

Development of delay line chopper ~Design scheme~

☐ Size of microstripline is related to the characteristic impedance.

$$Z = 2Z_0 (1 - 0.48e^{-\frac{0.96s}{h}})$$

$$Z_0 = \frac{60}{\sqrt{0.475\varepsilon_r + 0.067}} \ln\left(\frac{4h}{0.67(0.8w + t)}\right)$$

Characteristic impedance of Single Micro Strip Line

Length of microstripline and coaxial cable depend on beam energy

$$\frac{l_s}{v_s} + \frac{l_c}{v_c} = \frac{w + s}{\beta c}$$

$$\frac{l_s}{v_s} + \frac{l_c}{v_c} = \frac{w+s}{\beta c}$$

$$v_s = \frac{c}{\sqrt{\varepsilon_{eff}}}$$
:Velocity in microstripline

 v_c : Velocity in coaxial cable

:Lorentz factor

$$\varepsilon_{eff} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left(\frac{1}{\sqrt{1 + 12\frac{h}{w}}} \right)$$
 :Effective dielectric constant

Texas Instruments, "Application Note 905 Transmission Line RAPIDESIGNER Operation and Applications Guide E. O. Hammerstad, "Equations for microstrip circuitdesign," Proc. 5th Euro. Microw. Conf., 1975, pp.268–272

Development of delay line chopper ~Design~

ODesign parameters of delay line chopper

ε r (substrate : alumina ceramic)	9.0
W	8.0 [mm]
S	2.0 [mm]
h	5.0 [mm]
t	1.0 [μm]
l_s	30.0 [cm]
I_c	33.0 [cm]
Length of chopper (Beam direction)	50.0 [cm]
Full gap of chopper	15.0 [mm]
Number of microstripline	50
Characteristic impedance of Microstripline	51[Ω]

OModel of 3D calculation

Results of 3D calculation

Current Status ~Injection~

LINAC

- □ Completion
 - Construction work of new beam line (Bending magnet and Vertical steering magnet)
 - Vacuum test (10^-5[Pa])

□ Future

 Beam injection to PoP MERIT ring at the end of September

Current Status ~PoP MERIT ring~

- □ Completion
- Construction work of PoP MERIT ring
- Vacuum test (10^-5[Pa])
- Excitation test at operation condition
- RF power test(220 [kV] at 18.0952 [MHz])

□ Future

 Beam injection to PoP MERIT ring at the end of September

Summery

□Purpose

Proof of principle of MERIT Scheme

□ Evaluation • Modification and tuning of field index k for Fixed RF acceleration • Tune variation and acceptance for storage Adjustment of injection beam line ODevelopment of delay line chopper □ Current Status OConstruction work is almost all finished. OPreparing to beam injection to pop MERIT ring. □Future plan OBeam injection to PoP MERIT ring at the end of September

OBeam circulation test (Charged Stripping Foil etc…)

Thank you for your attention